初赛
ezre
一个python字节码文件,可以用pycdas查看字节码。我们借此来分析一下python字节码文件的结构。
涉及到闭包函数的内容,总的来说闭包就是函数被定义在了函数里面。
闭包,看这一篇就够了——带你看透闭包的本质,百发百中-CSDN博客
ezRe (Python 3.9)
[Code]
File Name: flag_checker.py #文件信息
Object Name: <module> #表示这是模块的主代码(即文件的最外层代码,不是函数或类)。
Arg Count: 0 #表示模块没有参数。
Pos Only Arg Count: 0 #表示没有仅限位置参数。
KW Only Arg Count: 0 #表示没有仅限关键字参数。
Locals: 0 #表示模块中没有局部变量。
Stack Size: 7 #栈大小
Flags: 0x00000040 (CO_NOFREE) #标志位,CO_NOFREE表示这段代码没有自由变量(即没有闭包)。
[Names] #全局变量、函数和模块的名称列表。
'base64'
'input'
'text'
'key'
'list'
'range'
's'
'j'
'i'
'len'
'data'
'_'
'append'
'result'
'zip'
'c'
'k'
'chr'
'ord'
'b64encode'
'encode'
'decode'
'enc'
'print'
[Var Names] #模块中的局部变量
[Free Vars] #自由变量
[Cell Vars] #闭包变量
[Constants] #常量池
0
None
'Flag: '
'7e021a7dd49e4bd0837e22129682551b' #密钥
[Code] #嵌套代码对象,类似list(ord(i) for i in range(102)),本质就是一个列表所以会显示为常量。同时python也会把这个封装为一个隐式函数,后面调用的时候以函数形式调用
File Name: flag_checker.py #属于的文件
Object Name: <listcomp> #对象的名字,列表推导式
Arg Count: 1 #有一个参数
Pos Only Arg Count: 0 #下面的同上
KW Only Arg Count: 0
Locals: 2
Stack Size: 4
Flags: 0x00000043 (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)
[Names]
'ord'
[Var Names]
'.0'
'i'
[Free Vars]
[Cell Vars]
[Constants]
102
[Disassembly] #字节码指令
0 BUILD_LIST 0 #建立一个列表对象
2 LOAD_FAST 0: .0 #加载参数
4 FOR_ITER 16 (to 22) #迭代器迭代对象
6 STORE_FAST 1: i #存储到i
8 LOAD_GLOBAL 0: ord #加载函数名称
10 LOAD_FAST 1: i #加载变量
12 CALL_FUNCTION 1 #调用函数
14 LOAD_CONST 0: 102 #加载常量
16 BINARY_XOR #异或操作,现在栈顶的两个值是i和102
18 LIST_APPEND 2 #追加结果到列表中,列表保存到栈顶
20 JUMP_ABSOLUTE 4 #返回,继续迭代
22 RETURN_VALUE #返回栈顶值,即列表
'<listcomp>' #列表推导式的名称(函数名)
256
50
1
''
51
'w53Cj3HDgzTCsSM5wrg6FMKcw58Qw7RZSFLCljRxwrxbwrVdw4AEwqMjw7/DkMKTw4/Cv8Onw4NGw7jDmSdcwq4GGg==' #密文
'yes!'
'try again...'
[Disassembly] #字节操作码,
0 LOAD_CONST 0: 0
2 LOAD_CONST 1: None #加载常量
4 JUMP_FORWARD 0 (to 6) #跳转到6
6 JUMP_FORWARD 0 (to 8)
8 JUMP_FORWARD 0 (to 10)
10 IMPORT_NAME 0: base64 #导入模块
12 STORE_NAME 0: base64
14 LOAD_NAME 1: input #获取输入
16 LOAD_CONST 2: 'Flag: '
18 CALL_FUNCTION 1 #调用input函数
20 STORE_NAME 2: text #存储到text
22 LOAD_CONST 3: '7e021a7dd49e4bd0837e22129682551b' #加载密钥
24 STORE_NAME 3: key #存储到key
26 LOAD_CONST 4: <CODE> <listcomp> #加载列表递推式代码
28 LOAD_CONST 5: '<listcomp>' #加载常量,列表递推式的名字
30 MAKE_FUNCTION 0 #以创建函数形式了列表递推式对象
32 LOAD_NAME 3: key #加载key
34 GET_ITER #迭代器,迭代对象key
36 CALL_FUNCTION 1 #调用列表递推式,key被作为迭代对象传入
38 STORE_NAME 3: key #保存返回结果到key
40 LOAD_NAME 4: list #获取函数名list
42 LOAD_NAME 5: range #获取函数名range
44 LOAD_CONST 6: 256 #获取range的值
46 CALL_FUNCTION 1 #调用函数range
48 CALL_FUNCTION 1 #调用函数list
50 STORE_NAME 6: s #把列表存储到s中,s为一个ASCII码表
52 LOAD_CONST 0: 0 #加载0
54 STORE_NAME 7: j #把0赋值给j
56 LOAD_NAME 5: range
58 LOAD_CONST 6: 256
60 CALL_FUNCTION 1 #调用函数range(256)
62 GET_ITER #以range(256)为对象
64 FOR_ITER 62 (to 128) #开始迭代,如果迭代完毕,跳转到128
66 STORE_NAME 8: i #存储迭代的数据
68 LOAD_NAME 7: j
70 LOAD_NAME 6: s
72 LOAD_NAME 8: i
74 BINARY_SUBSCR #下标操作,s[i]
76 BINARY_ADD #栈顶2个数据相加,这里为s[i]+j
78 LOAD_NAME 3: key
80 LOAD_NAME 8: i
82 LOAD_NAME 9: len
84 LOAD_NAME 3: key #调用函数len(key)
86 CALL_FUNCTION 1
88 BINARY_MODULO #对栈顶的两个元素取余,这里是i%len(key)
90 BINARY_SUBSCR #下标操作,现在栈顶为key和i%len(key),即为key[i%len(key)]
92 BINARY_ADD #栈顶两个相加,现在是s[i]+j+key[i%len(key)]
94 LOAD_CONST 6: 256
96 BINARY_MODULO #对栈顶两个元素取余,现在是(s[i]+j+key[i%len(key)])%256
98 STORE_NAME 7: j #保存结果到j中
100 LOAD_NAME 6: s
102 LOAD_NAME 7: j
104 BINARY_SUBSCR #下标操作s[j]
106 LOAD_NAME 6: s
108 LOAD_NAME 8: i
110 BINARY_SUBSCR #下标操作s[i]
112 ROT_TWO #交换栈顶两个元素
114 LOAD_NAME 6: s
116 LOAD_NAME 8: i
118 STORE_SUBSCR #赋值栈顶元素到s[i]
120 LOAD_NAME 6: s
122 LOAD_NAME 7: j
124 STORE_SUBSCR #赋值栈顶元素到s[j],这两步就是交换下标
126 JUMP_ABSOLUTE 64 #迭代继续,跳转回开始位置
128 LOAD_CONST 0: 0
130 DUP_TOP #复制一遍栈顶的值,这里为0
132 STORE_NAME 8: i
134 STORE_NAME 7: j #把栈顶的值复制给i和j,这里是两个0
136 BUILD_LIST 0
138 STORE_NAME 10: data ##建立列表data
140 LOAD_NAME 5: range
142 LOAD_CONST 7: 50
144 CALL_FUNCTION 1
146 GET_ITER
148 FOR_ITER 88 (to 238) #对range(50)进行迭代
150 STORE_NAME 11: _ #迭代值放入_
152 LOAD_NAME 8: i
154 LOAD_CONST 8: 1
156 BINARY_ADD #i+1
158 LOAD_CONST 6: 256
160 BINARY_MODULO #(i+1)%256
162 STORE_NAME 8: i #i=(i+1)%256
164 LOAD_NAME 7: j
166 LOAD_NAME 6: s
168 LOAD_NAME 8: i
170 BINARY_SUBSCR #s[i]
172 BINARY_ADD #s[i]+j
174 LOAD_CONST 6: 256
176 BINARY_MODULO #(s[i]+j)%256
178 STORE_NAME 7: j #j = (s[i]+j)%256
180 LOAD_NAME 6: s
182 LOAD_NAME 7: j
184 BINARY_SUBSCR #s[j]
186 LOAD_NAME 6: s
188 LOAD_NAME 8: i
190 BINARY_SUBSCR #s[i]
192 ROT_TWO
194 LOAD_NAME 6: s
196 LOAD_NAME 8: i
198 STORE_SUBSCR
200 LOAD_NAME 6: s
202 LOAD_NAME 7: j
204 STORE_SUBSCR #交换s[i]和s[j]
206 LOAD_NAME 10: data
208 LOAD_METHOD 12: append
210 LOAD_NAME 6: s
212 LOAD_NAME 6: s
214 LOAD_NAME 8: i
216 BINARY_SUBSCR #s[i]
218 LOAD_NAME 6: s
220 LOAD_NAME 7: j
222 BINARY_SUBSCR #s[j]
224 BINARY_ADD #s[i]+s[j]
226 LOAD_CONST 6: 256
228 BINARY_MODULO #(s[i]+s[j])%256
230 BINARY_SUBSCR #s[(s[i]+s[j])%256]
232 CALL_METHOD 1 #data.append(s[(s[i]+s[j])%256])
234 POP_TOP #清理栈顶
236 JUMP_ABSOLUTE 148 #继续迭代
238 LOAD_CONST 9: ''
240 STORE_NAME 13: result #定义空字符串result
242 LOAD_NAME 14: zip
244 LOAD_NAME 2: text
246 LOAD_NAME 10: data
248 CALL_FUNCTION 2 #调用zip函数有两个参数,就是text和data,放回一个元组,把数据成对成列表放在元组中,例如[(text[0],data[0]),(text[1],data[1]),...]
250 GET_ITER
252 FOR_ITER 32 (to 286) #对元组进行迭代
254 UNPACK_SEQUENCE 2 #解包,提示赋值2个变量
256 STORE_NAME 15: c #赋值数据给c,k
258 STORE_NAME 16: k
260 LOAD_NAME 13: result
262 LOAD_NAME 17: chr
264 LOAD_NAME 18: ord
266 LOAD_NAME 15: c
268 CALL_FUNCTION 1 #ord(c)
270 LOAD_NAME 16: k
272 BINARY_XOR #ord(c) ^ k
274 LOAD_CONST 10: 51
276 BINARY_XOR #ord(c) ^ k ^51
278 CALL_FUNCTION 1 #chr(ord(c) ^ k ^51)
280 INPLACE_ADD #result + chr(ord(c) ^ k ^51)
282 STORE_NAME 13: result #result = result
284 JUMP_ABSOLUTE 252 #继续迭代
286 LOAD_NAME 0: base64
288 LOAD_METHOD 19: b64encode
290 LOAD_NAME 13: result
292 LOAD_METHOD 20: encode
294 CALL_METHOD 0 #result.encode
296 CALL_METHOD 1 #base64.b64encode(result.encode)
298 LOAD_METHOD 21: decode
300 CALL_METHOD 0 #base64.b64encode(result.encode).decode
302 STORE_NAME 22: enc
304 LOAD_NAME 22: enc
306 LOAD_CONST 11: 'w53Cj3HDgzTCsSM5wrg6FMKcw58Qw7RZSFLCljRxwrxbwrVdw4AEwqMjw7/DkMKTw4/Cv8Onw4NGw7jDmSdcwq4GGg=='
308 COMPARE_OP 2 (==) #判断enc是否等于上面的base64.b64encode(result.encode).decode
310 POP_JUMP_IF_FALSE 324
314 LOAD_NAME 23: print
316 LOAD_CONST 12: 'yes!'
318 CALL_FUNCTION 1
320 POP_TOP
322 JUMP_FORWARD 8 (to 332)
324 LOAD_NAME 23: print
326 LOAD_CONST 13: 'try again...'
328 CALL_FUNCTION 1
330 POP_TOP
332 LOAD_CONST 1: None
334 RETURN_VALUE
上面代码的加密解密脚本
import base64
def enc():
text = input("flag:")
key = "7e021a7dd49e4bd0837e22129682551b"
key = list(ord(i) ^ 102 for i in key)
s = list(range(256))
j = 0
for i in range(256):
j = (s[i] + j + key[i % len(key)]) % 256
tmp = s[i]
s[i] = s[j]
s[j] = tmp
i = j = 0
data = list()
for _ in range(50):
i = (i + 1) % 256
j = (s[i] + j) % 256
tmp = s[i]
s[i] = s[j]
s[j] = tmp
data.append(s[(s[i] + s[j]) % 256])
result = ""
for c, k in zip(text, data):
result += chr(ord(c) ^ k ^ 51)
result = base64.b64encode(result.encode()).decode()
enc = 'w53Cj3HDgzTCsSM5wrg6FMKcw58Qw7RZSFLCljRxwrxbwrVdw4AEwqMjw7/DkMKTw4/Cv8Onw4NGw7jDmSdcwq4GGg=='
if result == enc:
print("yes!")
else:
print("try again...")
def dec():
enc = 'w53Cj3HDgzTCsSM5wrg6FMKcw58Qw7RZSFLCljRxwrxbwrVdw4AEwqMjw7/DkMKTw4/Cv8Onw4NGw7jDmSdcwq4GGg=='
key = "7e021a7dd49e4bd0837e22129682551b"
text = base64.b64decode(enc.encode()).decode()
key = list(ord(i) ^ 102 for i in key)
s = list(i for i in range(256))
j = 0
for i in range(256):
j = (s[i] + j + key[i % len(key)]) % 256
tmp = s[i]
s[i] = s[j]
s[j] = tmp
i = j = 0
data = list()
for _ in range(50):
i = (i + 1) % 256
j = (s[i] + j) % 256
tmp = s[i]
s[i] = s[j]
s[j] = tmp
data.append(s[(s[i] + s[j]) % 256])
result = ""
for c, k in zip(text, data):
result += chr(ord(c) ^ k ^ 51)
print(result)
dec()
Midre
先去主函数的花
nop完后发现还有问题,我们在下面的代码中按c试探一下,发现从第二个字节码开始就可以恢复为正常函数,所以还要一个垃圾指令,nop掉后即可看到主函数逻辑。
加密函数里面还有花指令,nop掉后即可看到完整代码。
去掉花指令后,可以看到主函数。首先是一个异或”what’s this”,后面是一个加密函数。
在这个加密函数里面有一个比较,可以找到密文。前面有一个函数,像是在按密钥的长度决定加密的轮数,再看加密函数的参数,像极了一个AES加密,且有两个常量’5855eab53a2275d3’和’b051a57d6d05b393’,推测一个是密钥一个是IV。
直接进行解密即可得到结果
决赛
reverse1
两个rc4加密,一个是原版另一个是被修改的版本。加密过程就是用key1先加密key,再用加密的key去加密flag。所以按照这个逻辑来逆向即可解密。rc4原版加密是对称加密,而修改版的rc4只要把减号改为加号就行。
在比赛时这题并没有写出来,脚本最后的结果一直是乱码,后面复盘时发现了一个关键的东西。当盒子是char类型时,只要盒子里的元素被当作下标时,就要把这个下标转成(unsigned char),如果不转的话在后面的下标就是一个负数。当盒子是unsigned char类型时,(box[v5] + box[v6])作为下标时要转化为(unsigned char),如果不转化的话(box[v5] + box[v6])就有可能会超过下标255。所以box[(unsigned char)(box[v5] + box[v6])]实际上就是box[(box[v5] + box[v6])%256]。
- 所以在写题中一定要注意下标的数值是否合规。
#include <stdio.h>
#include <string.h>
char input[32] = {
0x4E, 0x47, 0x38, 0x47, 0x62, 0x0A, 0x79, 0x6A, 0x03, 0x66, 0xC0, 0x69, 0x8D, 0x1C, 0x84, 0x0F,
0x54, 0x4A, 0x3B, 0x08, 0xE3, 0x30, 0x4F, 0xB9, 0x6C, 0xAB, 0x36, 0x24, 0x52, 0x81, 0xCF, 0x00
};
char key[100] = "ban_debug!";
char key1[] = "keykey";
unsigned char box[256];
int getbox(unsigned char*box, char*key,int keylen) {
char v4;
int v6 = 0;
int v8[256];
memset(v8, 0, 0x400uLL);
for (int i = 0; i <= 255; ++i)
{
box[i] = i;
v8[i] = (unsigned char)key[i % keylen];
}
v6 = 0;
for (int j = 0; j <= 255; ++j)
{
v6 = (v8[j] + v6 + box[j]) % 256;
v4 = box[j];
box[j] = box[v6];
box[v6] = v4;
}
return 0;
}
int dec1(unsigned char*box, unsigned char* input,int len) {
char v4;
int v5;
int v6;
int i;
v5 = 0;
v6 = 0;
for (i = 0; ; ++i)
{
if (len <= i)
break;
v5 = (v5 + 1) % 256;
v6 = (v6 + box[v5]) % 256;
v4 = box[v5];
box[v5] = box[v6];
box[v6] = v4;
input[i] ^= box[(unsigned char)(box[v5] + box[v6])];
}
return 0;
}
int dec2(unsigned char* box,char* input, int len) {
char v4;
int v5;
int v6;
int i;
v5 = 0;
v6 = 0;
for (i = 0; ; ++i)
{
if (len <= i)
break;
v5 = (v5 + 1) % 256;
v6 = (v6 + box[v5]) % 256;
v4 = box[v5];
box[v5] = box[v6];
box[v6] = v4;
input[i] += box[(unsigned char)(box[v5] + box[v6])];
}
return 0;
}
int main() {
getbox(box, key1, strlen(key1));
dec1(box, (unsigned char*)key, strlen(key));
memset(box, 0, sizeof(box));
getbox(box, key, strlen(key));
dec2(box, input, 32);
for (int i = 0; i < 31; i++) {
printf("%c", input[i]);
}
//puts(input);
}
reverse2
用010editer把ABC全部修改为UPX,ida分析后就是一个base64加密函数,直接就可以看到明文和码表,直接解密就得flag
reverse3
在main函数下面有个sub_140002E90函数,这个创建了一个子进程,并进行了一些写内存操作,可执行文件就是上面那串字符串,有一个异或0x11加密,解密得到C:\Users\Public\1.exe。
在1.exe的mian函数上面有一个函数。
逐一分析看看,能在sub_140001690函数里面找到一个255大小的盒,但是这个盒是被修改了的不是常规的AES盒,sub_140001380函数像是一个AES的密钥轮函数。继续往main函数上面看,还能看到密钥拓展函数。这就是一个AES无疑了。这时候我们再回头看main函数。
main函数的逻辑大概如下图。有一个加载密钥的函数,一个输入函数,还有密文。这个时候就可以解密了,但是不出所料的解不出来。这里加了反调试,我们调试不了,于是我们用fridahook来获取值。
要hook的数据(手动计算IDA中的地址偏移用于hook,这里是0x0000000140017060后面的0x17060)
1.密钥0x0000000140017060
2.s盒0x140005160
[!NOTE]
hook盒和密文时,在加密函数使用盒时hook,最开始就hook的话可能在盒被修改前。
3.密文0x1400152DC
4.输入0x140001E24的rdx
mian函数中我们的输入被保存到了v11中,然后在下面的for循环调用,我们直接获取寄存器的值就行,[rbp+rax+0E0h+var_100]就是v11的数据。
!要把可见字符拆分成两段分别hook,因为输入字符最好要保持在48个以内(小于等于密文长度)
对比分析发现我们的输入被改了,单字节加密,就是被加了一点偏移。我们可以打印所有可见字符,构建一个表查找对应查找原来的数据。密钥也被修改了。s盒也被修改了,对比没有魔改的AES盒是相同的,所以AES的魔改又被改回了正常的AES加密,直接用常规解密就行。密文是不变的。我们直接提出来写出解密脚本。以下为c和py的解密脚本和hook脚本。
#include <stdint.h>
#include <stdio.h>
#include <string.h>
typedef struct {
uint32_t eK[44], dK[44]; // encKey, decKey
int Nr; // 10 rounds
}AesKey;
#define BLOCKSIZE 16 //AES-128分组长度为16字节
// uint8_t y[4] -> uint32_t x
#define LOAD32H(x, y) \
do { (x) = ((uint32_t)((y)[0] & 0xff)<<24) | ((uint32_t)((y)[1] & 0xff)<<16) | \
((uint32_t)((y)[2] & 0xff)<<8) | ((uint32_t)((y)[3] & 0xff));} while(0)
// uint32_t x -> uint8_t y[4]
#define STORE32H(x, y) \
do { (y)[0] = (uint8_t)(((x)>>24) & 0xff); (y)[1] = (uint8_t)(((x)>>16) & 0xff); \
(y)[2] = (uint8_t)(((x)>>8) & 0xff); (y)[3] = (uint8_t)((x) & 0xff); } while(0)
// 从uint32_t x中提取从低位开始的第n个字节
#define BYTE(x, n) (((x) >> (8 * (n))) & 0xff)
/* used for keyExpansion */
// 字节替换然后循环左移1位
#define MIX(x) (((S[BYTE(x, 2)] << 24) & 0xff000000) ^ ((S[BYTE(x, 1)] << 16) & 0xff0000) ^ \
((S[BYTE(x, 0)] << 8) & 0xff00) ^ (S[BYTE(x, 3)] & 0xff))
// uint32_t x循环左移n位
#define ROF32(x, n) (((x) << (n)) | ((x) >> (32-(n))))
// uint32_t x循环右移n位
#define ROR32(x, n) (((x) >> (n)) | ((x) << (32-(n))))
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
// AES-128轮常量
static const uint32_t rcon[10] = {
0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL,
0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL
};
// S盒
unsigned char S[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
//逆S盒
unsigned char inv_S[256] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
/* copy in[16] to state[4][4] */
int loadStateArray(uint8_t(*state)[4], const uint8_t* in) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
state[j][i] = *in++;
}
}
return 0;
}
/* copy state[4][4] to out[16] */
int storeStateArray(uint8_t(*state)[4], uint8_t* out) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
*out++ = state[j][i];
}
}
return 0;
}
//秘钥扩展
int keyExpansion(const uint8_t* key, uint32_t keyLen, AesKey* aesKey) {
if (NULL == key || NULL == aesKey) {
printf("keyExpansion param is NULL\n");
return -1;
}
if (keyLen != 16) {
printf("keyExpansion keyLen = %d, Not support.\n", keyLen);
return -1;
}
uint32_t* w = aesKey->eK; //加密秘钥
uint32_t* v = aesKey->dK; //解密秘钥
/* keyLen is 16 Bytes, generate uint32_t W[44]. */
/* W[0-3] */
for (int i = 0; i < 4; ++i) {
LOAD32H(w[i], key + 4 * i);
}
/* W[4-43] */
for (int i = 0; i < 10; ++i) {
w[4] = w[0] ^ MIX(w[3]) ^ rcon[i];
w[5] = w[1] ^ w[4];
w[6] = w[2] ^ w[5];
w[7] = w[3] ^ w[6];
w += 4;
}
w = aesKey->eK + 44 - 4;
//解密秘钥矩阵为加密秘钥矩阵的倒序,方便使用,把ek的11个矩阵倒序排列分配给dk作为解密秘钥
//即dk[0-3]=ek[41-44], dk[4-7]=ek[37-40]... dk[41-44]=ek[0-3]
for (int j = 0; j < 11; ++j) {
for (int i = 0; i < 4; ++i) {
v[i] = w[i];
}
w -= 4;
v += 4;
}
return 0;
}
// 轮秘钥加
int addRoundKey(uint8_t(*state)[4], const uint32_t* key) {
uint8_t k[4][4];
/* i: row, j: col */
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
k[i][j] = (uint8_t)BYTE(key[j], 3 - i); /* 把 uint32 key[4] 先转换为矩阵 uint8 k[4][4] */
state[i][j] ^= k[i][j];
}
}
return 0;
}
//字节替换
int subBytes(uint8_t(*state)[4]) {
/* i: row, j: col */
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
state[i][j] = S[state[i][j]]; //直接使用原始字节作为S盒数据下标
}
}
return 0;
}
//逆字节替换
int invSubBytes(uint8_t(*state)[4]) {
/* i: row, j: col */
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
state[i][j] = inv_S[state[i][j]];
}
}
return 0;
}
//行移位
int shiftRows(uint8_t(*state)[4]) {
uint32_t block[4] = { 0 };
/* i: row */
for (int i = 0; i < 4; ++i) {
//便于行循环移位,先把一行4字节拼成uint_32结构,移位后再转成独立的4个字节uint8_t
LOAD32H(block[i], state[i]);
block[i] = ROF32(block[i], 8 * i);
STORE32H(block[i], state[i]);
}
return 0;
}
//逆行移位
int invShiftRows(uint8_t(*state)[4]) {
uint32_t block[4] = { 0 };
/* i: row */
for (int i = 0; i < 4; ++i) {
LOAD32H(block[i], state[i]);
block[i] = ROR32(block[i], 8 * i);
STORE32H(block[i], state[i]);
}
return 0;
}
/* Galois Field (256) Multiplication of two Bytes */
// 两字节的伽罗华域乘法运算
uint8_t GMul(uint8_t u, uint8_t v) {
uint8_t p = 0;
for (int i = 0; i < 8; ++i) {
if (u & 0x01) { //
p ^= v;
}
int flag = (v & 0x80);
v <<= 1;
if (flag) {
v ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
}
u >>= 1;
}
return p;
}
// 列混合
int mixColumns(uint8_t(*state)[4]) {
uint8_t tmp[4][4];
uint8_t M[4][4] = { {0x02, 0x03, 0x01, 0x01},
{0x01, 0x02, 0x03, 0x01},
{0x01, 0x01, 0x02, 0x03},
{0x03, 0x01, 0x01, 0x02} };
/* copy state[4][4] to tmp[4][4] */
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
tmp[i][j] = state[i][j];
}
}
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) { //伽罗华域加法和乘法
state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
}
}
return 0;
}
// 逆列混合
int invMixColumns(uint8_t(*state)[4]) {
uint8_t tmp[4][4];
uint8_t M[4][4] = { {0x0E, 0x0B, 0x0D, 0x09},
{0x09, 0x0E, 0x0B, 0x0D},
{0x0D, 0x09, 0x0E, 0x0B},
{0x0B, 0x0D, 0x09, 0x0E} }; //使用列混合矩阵的逆矩阵
/* copy state[4][4] to tmp[4][4] */
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
tmp[i][j] = state[i][j];
}
}
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
}
}
return 0;
}
// AES-128加密接口,输入key应为16字节长度,输入长度应该是16字节整倍数,
// 这样输出长度与输入长度相同,函数调用外部为输出数据分配内存
int aesEncrypt(const uint8_t* key, uint32_t keyLen, const uint8_t* pt, uint8_t* ct, uint32_t len) {
AesKey aesKey;
uint8_t* pos = ct;
const uint32_t* rk = aesKey.eK; //解密秘钥指针
uint8_t out[BLOCKSIZE] = { 0 };
uint8_t actualKey[16] = { 0 };
uint8_t state[4][4] = { 0 };
if (NULL == key || NULL == pt || NULL == ct) {
printf("param err.\n");
return -1;
}
if (keyLen > 16) {
printf("keyLen must be 16.\n");
return -1;
}
if (len % BLOCKSIZE) {
printf("inLen is invalid.\n");
return -1;
}
memcpy(actualKey, key, keyLen);
keyExpansion(actualKey, 16, &aesKey); // 秘钥扩展
// 使用ECB模式循环加密多个分组长度的数据
for (int i = 0; i < len; i += BLOCKSIZE) {
// 把16字节的明文转换为4x4状态矩阵来进行处理
loadStateArray(state, pt);
// 轮秘钥加
addRoundKey(state, rk);
for (int j = 1; j < 10; ++j) {
rk += 4;
subBytes(state); // 字节替换
shiftRows(state); // 行移位
mixColumns(state); // 列混合
addRoundKey(state, rk); // 轮秘钥加
}
subBytes(state); // 字节替换
shiftRows(state); // 行移位
// 此处不进行列混合
addRoundKey(state, rk + 4); // 轮秘钥加
// 把4x4状态矩阵转换为uint8_t一维数组输出保存
storeStateArray(state, pos);
pos += BLOCKSIZE; // 加密数据内存指针移动到下一个分组
pt += BLOCKSIZE; // 明文数据指针移动到下一个分组
rk = aesKey.eK; // 恢复rk指针到秘钥初始位置
}
return 0;
}
// AES128解密, 参数要求同加密
int aesDecrypt(const uint8_t* key, uint32_t keyLen, const uint8_t* ct, uint8_t* pt, uint32_t len) {
AesKey aesKey;
uint8_t* pos = pt;
const uint32_t* rk = aesKey.dK; //解密秘钥指针
uint8_t out[BLOCKSIZE] = { 0 };
uint8_t actualKey[16] = { 0 };
uint8_t state[4][4] = { 0 };
if (NULL == key || NULL == ct || NULL == pt) {
printf("param err.\n");
return -1;
}
if (keyLen > 16) {
printf("keyLen must be 16.\n");
return -1;
}
if (len % BLOCKSIZE) {
printf("inLen is invalid.\n");
return -1;
}
memcpy(actualKey, key, keyLen);
keyExpansion(actualKey, 16, &aesKey); //秘钥扩展,同加密
for (int i = 0; i < len; i += BLOCKSIZE) {
// 把16字节的密文转换为4x4状态矩阵来进行处理
loadStateArray(state, ct);
// 轮秘钥加,同加密
addRoundKey(state, rk);
for (int j = 1; j < 10; ++j) {
rk += 4;
invShiftRows(state); // 逆行移位
invSubBytes(state); // 逆字节替换,这两步顺序可以颠倒
addRoundKey(state, rk); // 轮秘钥加,同加密
invMixColumns(state); // 逆列混合
}
invSubBytes(state); // 逆字节替换
invShiftRows(state); // 逆行移位
// 此处没有逆列混合
addRoundKey(state, rk + 4); // 轮秘钥加,同加密
storeStateArray(state, pos); // 保存明文数据
pos += BLOCKSIZE; // 输出数据内存指针移位分组长度
ct += BLOCKSIZE; // 输入数据内存指针移位分组长度
rk = aesKey.dK; // 恢复rk指针到秘钥初始位置
}
return 0;
}
// 方便输出16进制数据
void printHex(uint8_t* ptr, int len, char* tag) {
printf("%s\ndata[%d]: ", tag, len);
for (int i = 0; i < len; ++i) {
printf("%.2X ", *ptr++);
}
printf("\n");
}
char table[] = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~ ";
char res[] = { 0x36,0x35,0x34,0x33,0x3a,0x39,0x38,0x37,0x3e,0x3d,0x85,0x84,0x83,0x8a,0x89,0x88,0x87,0x8e,0x8d,0x8c,0x8b,0x92,0x91,0x90,0x8f,0x76,0x75,0x74,0x73,0x7a,0x79,0x78,0x77,0x7e,0x7d,0x7c,0xa5,0xa4,0xa3,0xaa,0xa9,0xa8,0xa7,0xae,0xad,0xac,0xab,0xb2,
0xb1,0xb0,0xaf,0x96,0x95,0x94,0x93,0x9a,0x99,0x98,0x97,0x9e,0x9d,0x9c,0x45,0x44,0x43,0x4a,0x49,0x48,0x47,0x4e,0x4d,0x4c,0x4b,0x52,0x51,0x50,0x4f,0x3c,0x3b,0x42,0x41,0x40,0x3f,0xa6,0x9b,0xa2,0xa1,0xa0,0x9f,0x86,0x7b,0x82,0x81,0x80,0x66,0x66
};
char getcc(char in) {
for (size_t i = 0; i < 96; i++)
{
if (in == res[i])
{
return table[i];
}
}
}
int main() {
// case 1
const uint8_t key[16] = { 0x05,0x06,0x07,0x08,0x37,0x42,0x4d,0x58,0x63,0x00,0x0a,0x0c,0x0d,0x0e,0x0f,0x10 }; //十六字节密钥
const uint8_t pt[48] = { 0x71,0x55,0x7f,0xa8,0xfa,0x0e,0xa3,0x19,0xa0,0x5c,0xf9,0x0e,0x9b,0x0b,0x5e,0xfc,0xb5,0xa8,0x49,0xfd,0x90,0x99,0x74,0xc7,0x77,0x02,0x6a,0xf5,0x9a,0x6a,0xba,0x7f,0xfb,0xe7,0x68,0xda,0x54,0xee,0xe8,0xbb,0x78,0x01,0xe7,0xbb,0xa2,0x95,0x95,0xfa };
uint8_t ct[16] = { 0 }; // 外部申请输出数据内存,用于加密后的数据
uint8_t plain[16] = { 0 }; // 外部申请输出数据内存,用于解密后的数据
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 16; j++) {
ct[j] = pt[j + i * 16];
}
aesDecrypt(key, 16, ct, plain, 16);
for (int k = 0; k < 16; k++) {
printf("%c", getcc(plain[k]));
}
}
return 0;
}
import base64
from base64 import encode
from Crypto.Cipher import AES
key = bytes.fromhex("0506070837424d5863000a0c0d0e0f10") #需要加密的内容,bytes类型
aes = AES.new(key,AES.MODE_ECB) #创建一个aes对象
enc ="71557FA8FA0EA319A05CF90E9B0B5EFCB5A849FD909974C777026AF59A6ABA7FFBE768DA54EEE8BB7801E7BBA29595FA0F"
result =""
for i in range(len(enc)//32):
#print(enc[i*32:(i+1)*32:])
den_text = aes.decrypt(bytes.fromhex(enc[i*32:(i+1)*32:])) # 解密密文
result+= den_text.hex()
#print(den_text.hex(),end='')
table = dict()
chars = "!#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~ "
enc_char ="""45 43 4a 49 48 47 4e 4d 4c 4b 52 51 50 4f 36
35 34 33 3a 39 38 37 3e 3d 3c 3b 42 41 40 3f a6
a5 a4 a3 aa a9 a8 a7 ae ad ac ab b2 b1 b0 af 96
95 94 93 9a 99 98 97 9e 9d 9c 9b a2 a1 a0 9f 86 85
84 83 8a 89 88 87 8e 8d 8c 8b 92 91 90 8f 76 75
74 73 7a 79 78 77 7e 7d 7c 7b 82 81 80 66 66 66 """
b = enc_char.replace(' ','').replace('\n','')
for i,char in enumerate(chars):
tmp = b[2 * i:2 * i + 2]
table[bytes.fromhex(tmp)] = char
flag =""
for i in bytes.fromhex(result):
flag+= table.get(i.to_bytes(),'?')
print(flag)
hook脚本
var inter=setInterval(function () {
var sgame = Process.findModuleByName("1.exe");
var baseaddr = sgame.base
if(sgame==null){
console.log("无");
return;
}
console.log("base"+baseaddr);
clearInterval(inter);
console.log("sbox")
console.log(hexdump(baseaddr.add(0x005160),{length:255,ansi:true}))
console.log("key")
console.log(hexdump(baseaddr.add(0x0017060),{length:16,ansi:true}))
Interceptor.attach(baseaddr.add(0x001E7F), {
onEnter: function (args) {
var rax=this.context.rax;
console.log("secret" +rax);
console.log(hexdump(ptr(rax),{length: 48,ansi:true}));
}}),
Interceptor.attach(baseaddr.add(0x001E29), {
onEnter: function (args) {
var rdx=this.context.rdx;
console.log("input" +rdx);
console.log(hexdump(ptr(rdx),{length: 95,ansi:true}));
}
})
,
Interceptor.attach(baseaddr.add(0x001720), {
onEnter: function (args) {
console.log(hexdump(baseaddr.add(0x5160),{length: 256,ansi:true}));
}
})
},1)